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Surface growth with spatially correlated noise
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The (2+1)-dimensional surface growth with spatial long-range correlations is studied using the Kadar-
Parisi-Zhang equation. The growth exponent is found to increase with the parametgch characterizes the
noise correlations, especially fpr>0.5.[S1063-651X97)02501-4

PACS numbg(s): 05.40:+j, 68.35.Fx, 68.55.Jk

Nonequilibrium surface growth processes often exhibit athe ballistic depositioi9—11], the directed polyme9], and
phenomenon called kinetic roughening, where the surfacthe solid-on-solid moddll1]. There are some disagreements
develops a self-affine morpholodyt]. Much attention has among the simulation results. For example, the results of
been given to a special class of modedallistic deposition,  Amar, Lam, and Family11] obtained for the ballistic depo-
Eden, or polynucleation growthwhich are described by the sjtion and restricted solid-on-solid models agree with the
Kardar-Parisi-ZhangKPZ) equation[2] prediction of Medinaet al. [4], but are in conflict with the

N prediction of Zhand7]. Numerical studie$9] of the effect
ah(x,t)=vV2h(x,t)+ =[Vh(x,t)]?+ 5n(x,t). (1)  of the long-range spatially correlated noise on the surface
2 growth described by the KPZ equation and on the related
directed polymer problem, on the other hand, give good
agreement with the prediction of Hentschel and Farfslly
The surface growth with temporally correlated noise has
been studied also in (£1) dimensiong4,12].

an ;ﬁlec_tive SLerfEacelter;]sion,hanﬂx,tl) is tt)hi nqise.Th _ It should be noted that the (21)-dimensional KPZ equa-
olutions of Eq(1) show the scaling behavior. The sim- tion with a special type of noise correlations, namely,

lest quantity to investigate is the surface width - - I
piest _Juathy 9 (X8 (X)) ~[(X—X")2+ (t—t")2] M2 has been stud-

W=([hZ—h?]¥3 where the overbar and angular brackets, 7\” e

denote spatial and noise averages, respectively. For a systé in Ref.[13] to analyze roughness of_vorte>_< lines in the

of sizeL,W is suggested to have the scaling fof#} random gaugeXY model. The (2 1)-dimensional KPZ
equation with correlated noise given by E®), however,

tA if t<L? has not been investigated yet. It has been shown only that the
Lo if t>L2 (2 critical exponents cannot be obtained by the dynamical
' renormalization-group approach for this case because fixed
where 8, @, andz are the growth, roughness, and dynamicPOINts do not exist in the one-loop approximatigh. In a
exponent of the interface, respectively. related paper, Meakin and Julli¢h0,14] introduced a hop-
The case when the noise is uncorrelated has been wdhing model of ballistic deposition, in which particles were
studied. For the (% 1) dimension one can obtain exact re- d€posited on the growing surface following a Levy flight
sults 3= 1/3 anda= 1/2 by mapping Eq(1) into the Burgers distribution. In this case, the distance measured between sites

equation[2]. Ford>1 the exact results are lacking and the ©f Subsequent growth, as measured along the interface, is

Here h()Z,t) is the local height of the surface above a
d-dimensional substrate in a{ 1)-dimensional spacey
characterizes the tilt dependence of the growth veloeitig,

W(L,t)~

-1/ :
critical exponents have been evaluated numeridally chosen to be equal to=r ", wherer is a random number
Recently, Medinaet al, [4] considered the spatially cor- between 0 and 1. The authors have claimed that this model
related noise with the correlator should be described by the KPZ equation wittof Eq. (3)

being equal tof. The results obtained for the exponents
(,7()2,0n(f,tf»:2D|§_;r|2pfd5(t_tr), (3) and g roughly agree with the prediction of Medir al. for

1+1 dimensiond10]. A weak dependence of these expo-
where Osp=d/2. The existence of long-range correlated nents onf was found in the (2 1)-dimensional casgl4].
noise has been suggested as a possible mechanism forlt should be noted that in the simulations of Meakin and
anomalous exponents observed in experimgitas well as  Jullien the link between the deposition process and the noise
in simulationg 6] on interface growth in porous media. By a is rather unclear. As it was mentioned in Rgf1], the Levy
dynamical renormalization group it is foun@d!] that in  flight deposition rule used by these authors would not lead to
1+1 dimensions for smalp the critical exponents are the the expected distributioR(x)~x2*~1. Thus the scaling be-
same as for uncorrelated noise. fpoabove a certain critical havior in (2+1)-dimensional surface growth with spatially
value the exponents become dependenfpoift should be correlated noise remains, at the present time, unclear.
noted that different theoretical approach4d,§ lead to dif- In this paper we study this problem solving the KPZ equa-
ferent dependences of the critical exponentspoim 1+1  tion numerically. We find that fop>0.5 the critical expo-
dimensions. To check theoretical predictions numericahents have a stronger dependencepocompared to those
simulations have been carried out for the KPZ equafln  obtained in the Meakin-Jullien modgl4].
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The spatial derivatives in Eql) are discretized using 1.5 I I
standard forward-backward differences on a hypercubic grid
with a lattice constanA x. The integration of this equation is 1.0 0.82 —

carried out by the Euler algorithm with time increments
At. Denoting the grid points bgi and the basic vectors char-
acterizing the surface bg,, ....eq we arrive at the dis-
cretized equationl5]

AT 8

h(RT+80)=h(n)+ — >, {[h(n+e,1)—2h(nT)
AX?i=1 i
+h(n—¢ )] +3s[h(n+e 1) 15 I R
~ s —— 0 1 2 3 4 5
—h(n—g;,t)]%}+ y3Atp(n,1). (4) In t
Here one uses dimensionless quantiﬁesh/ho, X=x/Xo, FIG. 1. log-log plot of the widthW vs t for different values of
andt=t/ty, where the natural units are given by p. HereL=256,Ax=1, v=0.5, ¢=0.1, and\ = /600. Open tri-
angles, squares, hexagons, and cirles correspopé=f 0.5, 0.7,
v v? v 2 d and 0.82, respectively. Far<0.5 we takeAt=0.02 and the results
hozx, to:_az)\za Xo= 02N2 o°=2D/AX". are averaged over 100 samples. For0 the best fit gives

(5) B=0.241+0.004, which agrees with the value reported by Moser,
Kertesz, and Wolf [15]. For p=0.7 and 0.82 we chose
At=0.0005 and 0.000 25, respectively. The average is taken over

In the Fourier space the renormalized noiﬂeﬁ,’f) has the
50 runs. The error bars are smaller than the symbols.

correlation

(n(K,0) 9K, 0"))=k 25(K+K)S(0o+w'). (6  100.For each value gf we calculate the noise-noise corre-
lation function and compare it to the expected 2 behav-
Since the spatially correlated noise does not break thér. For p<<0.5 the correlation function of noise behaves as
invariance of Eq(2) with respect to a tilting of the surface expected, but for largep the effective decay exponent for
[3] the exponents, z, and3 are related by the scaling laws the generated noise () was found somewhat smaller. For
the largestp=1 we obtainedp’ ~0.82. In what followsp
atz=2, z=alp. (7)  should be understood as the effective expopent
Figure 1 shows the time dependence of the widtHor
Thus, to obtain a full set of the critical exponents one has tgphe system sizé = 256 for various values gf. Forp=0 we
calculate one of them. We will determiras a function of reproduce the resui=0.241+0.004 of Moser, Kertesz, and
p- ) _ Wolf [15]. The dependence @ on p is shown in Fig. 2. For
To create the spatially correlated noise we follow Pehg  , <0 35 the long-range correlations are probably still irrel-
al [9]. We first generate a standard whir Gaussian un-  eyant and the values @ are approximately equal to those
correlated noise 7y(n,t) and then carry out the Fourier
transformation for spatial variables to obtazim(ﬁ,'t' ). We
define 0.4~ m

7(a,t)=[a P no(a,t). (8 1}
o 0.3 - -
The noise n(n,t) is obtained by Fourier transforming
n(ﬁf) back into the space domain. The fast Fourier trans- e
formation algorithm 16] has been implemented.
. : . . g 02 —
In our simulations we consider the case of 2 dimen-
sions and choosAx, v, and o to be the same as in Ref. L e this work .
[15], namely,Ax=1, »=0.5, ando=0.1. To be sure that we
are in a strong-coupling regime we chose \/600. The time 0.1 o Ref 14 -
incrementAt should be small enough to ensure the stability
of algorithm. Simple von Neumann stability analygl$] for
the corresponding linear equatio® £0, A=0) shows that ool 1 0]
At must satisfy the conditiodt<(AX)?/2. We found that 00 02 04 08 08 1.0
At should be much smaller than the upper bound given by P
this criterion and its choice strongly dependsporhe larger
the value Ofp, the smalleAt should be taken. Depending on FIG. 2. Dependence g8 on p. The error bars are due to the
p, we choose\t between 0.02 and 0.00025. The number offitting procedure. The results from R¢L4] (open squarésare also
samples used for noise averaging is taken between 50 anrtiown for comparison.
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obtained without the correlated noise. The increasg bk-  tion with the Levy flight distribution of particlegl4] is not
comes more significant fgy=0.5. Forp>0.5 our values of equivalent to the KPZ equation with long-range spatially
B are higher than those obtained by Meakin and Julien focorrelated noise in 2 1 dimensions. It would be interesting
the hopping model of ballistic depositi¢@4]. For the larg-  to study the effect of temporal noise on the growth processes

estp=0.82 we obtain3=0.38+0.01. in (2+1)-dimensional systems.
To summarize, we have obtained a nonuniversal growth _ - _
exponentB for the surface growth in 21 dimensions with The author thanks M. Cieplak for a critical reading of

spatially correlated noise by integrating the KPZ equationmanuscript. Financial support from the Polish agency KBN
Other critical exponents may be obtained from the scalindGrant No. 2P302 127 Q7&nd the Japan Society for Promo-
laws. Our results suggest that the model of ballistic deposition of Sciences is acknowledged.
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