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Surface growth with spatially correlated noise
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~Received 25 June 1996!

The (211)-dimensional surface growth with spatial long-range correlations is studied using the Kadar-
Parisi-Zhang equation. The growth exponent is found to increase with the parameterr, which characterizes the
noise correlations, especially forr.0.5. @S1063-651X~97!02501-4#

PACS number~s!: 05.40.1j, 68.35.Fx, 68.55.Jk
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Nonequilibrium surface growth processes often exhib
phenomenon called kinetic roughening, where the surf
develops a self-affine morphology@1#. Much attention has
been given to a special class of models~ballistic deposition,
Eden, or polynucleation growth!, which are described by th
Kardar-Parisi-Zhang~KPZ! equation@2#

] th~xW ,t !5n¹2h~xW ,t !1
l

2
@¹h~xW ,t !#21h~xW ,t !. ~1!

Here h(xW ,t) is the local height of the surface above
d-dimensional substrate in a (d11)-dimensional space,l
characterizes the tilt dependence of the growth velocity,n is
an effective surface tension, andh(xW ,t) is the noise.

Solutions of Eq.~1! show the scaling behavior. The sim
plest quantity to investigate is the surface wid
W5^@h22h̄2#1/2&, where the overbar and angular bracke
denote spatial and noise averages, respectively. For a sy
of sizeL,W is suggested to have the scaling form@3#

W~L,t !;H tb if t!Lz

La if t@Lz,
~2!

whereb, a, andz are the growth, roughness, and dynam
exponent of the interface, respectively.

The case when the noise is uncorrelated has been
studied. For the (111) dimension one can obtain exact r
sultsb51/3 anda51/2 by mapping Eq.~1! into the Burgers
equation@2#. For d.1 the exact results are lacking and t
critical exponents have been evaluated numerically@1#.

Recently, Medinaet al., @4# considered the spatially cor
related noise with the correlator

^h~xW ,t !h~x8W ,t8!&52DuxW2xW8u2r2dd~ t2t8!, ~3!

where 0<r<d/2. The existence of long-range correlat
noise has been suggested as a possible mechanism
anomalous exponents observed in experiments@5# as well as
in simulations@6# on interface growth in porous media. By
dynamical renormalization group it is found@4# that in
111 dimensions for smallr the critical exponents are th
same as for uncorrelated noise. Forr above a certain critica
value the exponents become dependent onr. It should be
noted that different theoretical approaches@4,7,8# lead to dif-
ferent dependences of the critical exponents onr in 111
dimensions. To check theoretical predictions numeri
simulations have been carried out for the KPZ equation@9#,
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the ballistic deposition@9–11#, the directed polymer@9#, and
the solid-on-solid model@11#. There are some disagreemen
among the simulation results. For example, the results
Amar, Lam, and Family@11# obtained for the ballistic depo
sition and restricted solid-on-solid models agree with
prediction of Medinaet al. @4#, but are in conflict with the
prediction of Zhang@7#. Numerical studies@9# of the effect
of the long-range spatially correlated noise on the surf
growth described by the KPZ equation and on the rela
directed polymer problem, on the other hand, give go
agreement with the prediction of Hentschel and Family@8#.
The surface growth with temporally correlated noise h
been studied also in (111) dimensions@4,12#.

It should be noted that the (211)-dimensional KPZ equa
tion with a special type of noise correlations, name

^h(xW ,t)h(xW8,t8)&;@(xW2xW8)21(t2t8)2#21/2, has been stud-
ied in Ref. @13# to analyze roughness of vortex lines in th
random gaugeXY model. The (211)-dimensional KPZ
equation with correlated noise given by Eq.~3!, however,
has not been investigated yet. It has been shown only tha
critical exponents cannot be obtained by the dynam
renormalization-group approach for this case because fi
points do not exist in the one-loop approximation@4#. In a
related paper, Meakin and Jullien@10,14# introduced a hop-
ping model of ballistic deposition, in which particles we
deposited on the growing surface following a Levy flig
distribution. In this case, the distance measured between
of subsequent growth, as measured along the interfac
chosen to be equal tox5r21/f , wherer is a random number
between 0 and 1. The authors have claimed that this mo
should be described by the KPZ equation withr of Eq. ~3!
being equal to12f . The results obtained for the exponentsa
andb roughly agree with the prediction of Medinaet al. for
111 dimensions@10#. A weak dependence of these exp
nents onf was found in the (211)-dimensional case@14#.

It should be noted that in the simulations of Meakin a
Jullien the link between the deposition process and the n
is rather unclear. As it was mentioned in Ref.@11#, the Levy
flight deposition rule used by these authors would not lead
the expected distributionP(x);x2r21. Thus the scaling be-
havior in (211)-dimensional surface growth with spatial
correlated noise remains, at the present time, unclear.

In this paper we study this problem solving the KPZ equ
tion numerically. We find that forr.0.5 the critical expo-
nents have a stronger dependence onr compared to those
obtained in the Meakin-Jullien model@14#.
1178 © 1997 The American Physical Society
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The spatial derivatives in Eq.~1! are discretized using
standard forward-backward differences on a hypercubic
with a lattice constantDx. The integration of this equation i
carried out by the Euler algorithm with time incremen
Dt. Denoting the grid points bynW and the basic vectors cha
acterizing the surface byeW1 , . . . ,eWd we arrive at the dis-
cretized equation@15#

h̃~nW , t̃1d t̃ !5h̃~nW , t̃ !1
D t̃

D x̃ 2(i51

d

$@ h̃~nW 1eW i , t̃ !22h̃~nW , t̃ !

1h̃~nW 2eW i , t̃ !#1 1
8 @ h̃~nW 1eW i , t̃ !

2h̃~nW 2eW i , t̃ !#2%1A3D t̃h~nW , t̃ !. ~4!

Here one uses dimensionless quantitiesh̃5h/h0 , x̃5x/x0,
and t̃5t/t0, where the natural units are given by

h05
n

l
, t05

n2

s2l2 , x05A n3

s2l2, s252D/Dxd.

~5!

In the Fourier space the renormalized noiseh(nW , t̃) has the
correlation

^h~kW ,v!h~kW8,v8!&5k22rd~kW1kW8!d~v1v8!. ~6!

Since the spatially correlated noise does not break
invariance of Eq.~2! with respect to a tilting of the surfac
@3# the exponentsa, z, andb are related by the scaling law

a1z52, z5a/b. ~7!

Thus, to obtain a full set of the critical exponents one has
calculate one of them. We will determineb as a function of
r.

To create the spatially correlated noise we follow Penget
al @9#. We first generate a standard white~or Gaussian un-
correlated! noise h0(nW , t̃ ) and then carry out the Fourie
transformation for spatial variables to obtainh0(qW , t̃ ). We
define

h~qW , t̃ !5uqW u2rh0~qW , t̃ !. ~8!

The noise h(nW , t̃ ) is obtained by Fourier transformin
h(qW , t̃ ) back into the space domain. The fast Fourier tra
formation algorithm@16# has been implemented.

In our simulations we consider the case of 211 dimen-
sions and chooseDx, n, ands to be the same as in Re
@15#, namely,Dx51, n50.5, ands50.1. To be sure that we
are in a strong-coupling regime we chosel5A600. The time
incrementDt should be small enough to ensure the stabi
of algorithm. Simple von Neumann stability analysis@15# for
the corresponding linear equation (D50, l50) shows that
Dt must satisfy the conditionD t̃,(D x̃ )2/2. We found that
Dt should be much smaller than the upper bound given
this criterion and its choice strongly depends onr. The larger
the value ofr, the smallerDt should be taken. Depending o
r, we chooseDt between 0.02 and 0.00025. The number
samples used for noise averaging is taken between 50
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100. For each value ofr we calculate the noise-noise corr
lation function and compare it to the expectedx2r22 behav-
ior. For r,0.5 the correlation function of noise behaves
expected, but for largerr the effective decay exponent fo
the generated noise (r8) was found somewhat smaller. Fo
the largestr51 we obtainedr8'0.82. In what followsr
should be understood as the effective exponentr8.

Figure 1 shows the time dependence of the widthW for
the system sizeL5256 for various values ofr. Forr50 we
reproduce the resultb50.24160.004 of Moser, Kertesz, and
Wolf @15#. The dependence ofb on r is shown in Fig. 2. For
r,0.35 the long-range correlations are probably still irr
evant and the values ofb are approximately equal to thos

FIG. 1. log-log plot of the widthW vs t for different values of
r. HereL5256,Dx51, n50.5, s50.1, andl5A600. Open tri-
angles, squares, hexagons, and cirles correspond tor50, 0.5, 0.7,
and 0.82, respectively. Forr<0.5 we takeDt50.02 and the results
are averaged over 100 samples. Forr50 the best fit gives
b50.24160.004, which agrees with the value reported by Mos
Kertesz, and Wolf @15#. For r50.7 and 0.82 we chose
Dt50.0005 and 0.000 25, respectively. The average is taken
50 runs. The error bars are smaller than the symbols.

FIG. 2. Dependence ofb on r. The error bars are due to th
fitting procedure. The results from Ref.@14# ~open squares! are also
shown for comparison.
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obtained without the correlated noise. The increase ofb be-
comes more significant forr>0.5. Forr.0.5 our values of
b are higher than those obtained by Meakin and Julien
the hopping model of ballistic deposition@14#. For the larg-
estr50.82 we obtainb50.3860.01.

To summarize, we have obtained a nonuniversal gro
exponentb for the surface growth in 211 dimensions with
spatially correlated noise by integrating the KPZ equati
Other critical exponents may be obtained from the sca
laws. Our results suggest that the model of ballistic dep
. A

b,

,

r

th

.
g
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tion with the Levy flight distribution of particles@14# is not
equivalent to the KPZ equation with long-range spatia
correlated noise in 211 dimensions. It would be interestin
to study the effect of temporal noise on the growth proces
in (211)-dimensional systems.
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